Phase 1 Study of an Intracameral Travoprost Hydrogel-based Implant for the Treatment of POAG and Ocular Hypertension

Goldberg D, Walters TR, Bacharach J, Cheung M, Braun E, Silva F, Goldstein MH

ARVO Annual Meeting | May 2021 | Virtual

Financial Disclosures

- Sponsorship of clinical trial: Ocular Therapeutix, Inc.
- Goldberg D (presenting author), Walters TR and Bacharach J are investigators in the clinical trial sponsored by Ocular Therapeutix, Inc.
- Goldstein MH, Cheung M, Braun E & Silva F are employees of Ocular Therapeutix, Inc.

Unmet Need in Glaucoma Therapy

Poor Adherence has been shown to be Associated with Disease Progression and Blindness

- Glaucoma is a chronic condition which cannot be reversed and must be monitored for life¹
- Lowering intraocular pressure (IOP) is critical for slowing disease progression in glaucoma and ocular hypertension²
- Prostaglandin analogues are commonly used as the first line of therapy to effectively lower IOP³

Chronic Eye Drop Therapy Issues affecting IOP Control Management

- Poor adherence to regimen^{1,4,5}
- Limited bioavailability⁶
- Dissatisfaction with local side effects⁷
 - Hyperemia with topical travoprost eye drops
- Limitations with topical drops application⁸
 - Difficulty with handling the bottle
 - Limited instillation accuracy
 - Potential washout of drops

^{1.} Nordstrom BL, Friedman DS, Mozaffari E, Quigley HA, Walker AM. Am J Ophthalmol. 2005;140(4):598-606.

^{2.} Noecker RJ. Ther Clin Risk Manag. 2006;2(2):193-206.

^{3.} Quigley HA, Broman AT. Br J Ophthalmol. 2006;90(3):262-267.

^{4.} Olthoff CMG, Schouten JSAG, van de Borne BW, Webers CAB. Ophthalmology. 2005;112(6):953-961.

^{5.} Schwartz GF, Quigley HA. Surv Ophthalmol. 2008;53 Suppl1:S57-68.

^{6.} Saettone MF. Business Briefing: Pharmatech. 2002;1:167-171.

^{7.} Inoue K. Managing adverse effects of glaucoma medications. Clin Ophthalmol. 2014;8:903-913.

^{8.} An JA, Kasner O, Samek DA, Lévesque V. J Cataract Refract Surg. 2014;40(11):1857-1861.

OTX-TIC (Travoprost Intracameral Implant)

For Intracameral Injection

Product Attributes

- Travoprost loaded microparticles in hydrogel with a goal of sustained drug delivery of 4-6 months
- Administered via a single injection with proprietary injector (26G-27G)
- Implant resides in the iridocorneal angle, hydrates in less than 2 minutes
- Preservative-free
- Fully biodegradable

In preclinical models (beagle dogs):

- Steady state *in vitro* and *in vivo* release through 4 months, which correlates to a duration of 4-6 months in humans
- Demonstrated IOP lowering effect of approximately 25-30% through 4 months

OTX-TIC PHASE 1 STUDY

OBJECTIVE: To evaluate the safety, tolerability and efficacy of a single OTX-TIC implant, in subjects with primary open-angle glaucoma or ocular hypertension in a Phase 1 study

DESIGN

- Open-label, proof-of-concept study
- US study, 19 subjects at 5 sites
- One eye per patient will be treated
- Key Inclusion criteria:
 - Controlled ocular HTN or POAG
 - Open, normal anterior chamber angles on gonioscopy

EVALUATIONS

- Safety, tolerability, and biological activity
- Diurnal IOP at Baseline, 2 weeks, 6 weeks, 12 weeks, Month 4, and Month 6 (8 AM, 10 AM, 4 PM)

ACTIVE COMPARATOR

• Non-study eye receives topical travoprost daily

All Cohorts: Mean IOP Change From Baseline

IOP Decreased After 2 Days Following OTX-TIC Implantation & Lowering to 7-11 mmHg Recorded

NB: Interim look as of 04/12/2021. Unmonitored data (8AM measurements). If the study eye was given other IOP lowering medication, the IOP value was removed from the analysis

All Cohorts: Duration Of Effect With One Implant

Cohort 2 Showed the Most Consistent Durable Response in all Subjects up to Month 6 & 50% of Subjects up to Month 9

	Day 42 % (n/N)	Day 85 % (n/N)	Month 4 % (n/N)	Month 5 % (n/N)	Month 6 % (n/N)	Month 7 % (n/N)	Month 8 % (n/N)	Month 9 % (n/N)	Month 10-22 % (n/N)
Cohort 1 (15 µg) _{N=5}	100 (5/5)	100 (5/5)	80 (4/5)	80 (4/5)	60 (3/5)	40 (2/5)	40 (2/5)	40 (2/4)	20 (1/5)
Cohort 2 (26 µg) N=4	100 (4/4)	100 (4/4)	100 (4/4)	100 (4/4)	100 (4/4)	100 (4/4)	75 (3/4)	50 (2/4)	NA
Cohort 3 (15 µg) (Fast-degrading) N=5	100 (5/5)	60 (3/5)	40 (2/5)	40 (2/5)	40 (2/5)	20 (1/5)	20 (1/5)	20 (1/5)	NA
Cohort 4 (5 µg) (Fast-degrading) N=5‡	100 (5/5)	100 (5/5)	80 (4/5)	75 (3/4) ‡	75 (3/4) ‡	NA	NA	NA	NA
Total *	100 (19/19)	89 (17/19)	74 (14/19)	72 [‡] (13/18)	67‡ (12/18)	50 (7/14)	43 (6/14)	39 (5/13)	20 (1/5)

[‡]Last subject in Cohort 4 past Month 4 timepoint so far and follow-up is ongoing

All Cohorts: Safety Overview

Ocular Adverse Events in the Study Eye

	Fast-de				
Number of subjects with ocular AEs:	Cohort 1 (15µg) N=5	Cohort 2 (26µg) N=4	Cohort 3 (15µg) N=5	Cohort 4* (5µg) N=5	OTX-TIC N=19
Iritis (low grade)	2	2	1	1	6
Peripheral anterior synechiae	3	0	0	0	3
Corneal Edema	0	1	0	0	1
Subconjunctival Hemorrhage	0	0	1	0	1
Elevated IOP	0	0	2	0	2
Transient BCVA decrease	0	1	1	0	2
Total AEs per cohort	5	4	5	1	15

NB: In Cohort 1, two same subjects had low grade iritis and peripheral anterior synechiae

All Cohorts: No Effect Observed On Corneal Health

Pachymetry & Endothelial Cell Counts Indicate No Clinically-Meaningful Change from Baseline

Conclusions

OTX-TIC shows Promise as a Sustained-Release Therapy with a Long Duration of Action

Clinically-meaningful decrease in IOP

Mean IOP values were decreased in patients receiving both OTX-TIC as early as two days following administration, and mean IOP decrease was comparable to topical travoprost therapy

\square Duration of therapy

Many subjects exhibited duration of IOP-lowering effect of 6+ months in Cohorts 1 and 2, and between 3-6 months in Cohorts 3 and 4 (fast degrading implant) with a single implant: Longest and most consistent IOP lowering in Cohort 2

Bioresorbable

Implant biodegraded in 5-7 months (Cohorts 1 & 2); Fast degrading implants biodegraded in 3-5 months (Cohorts 3 & 4)

Implant location and movement

Implant was not observed to move at slit lamp and was visible at all exams in all patients using gonioscopy

Corneal health

Endothelial cell counts, pachymetry assessments, and slit lamp examinations indicate no changes from baseline

NB: Interim look as of 04/12/2021; Unmonitored data.

NEXT STEPS:

- Ongoing Study; Continued long-term evaluation in 1 subject in Cohort 4
- Phase II Trial Planning Initiated; Planned start-up later this year